
Implementation of a framework for a DHT-based Distributed Location Service

Simone Cirani, Luca Veltri
Dpt. Information Engineering, University of Parma

Parma, Italy
E-mail: simone.cirani@gmail.com, luca.veltri@unipr.it

Abstract: Distributed Hash Tables (DHTs) are structured peer-
to-peer systems in which a number of peer nodes collectively
cooperate to provide a key/value pair information storage and
retrieval service. All DHTs are characterized by desirable
features such as scalability, fault tolerance, and self-
organization. Each DHT node is responsible for maintaining a
subset of the stored information, which depends on the specific
DHT algorithm. Many Internet-based applications strongly rely
on a Location Service (LS), such as DNS, in order to map a URI
to one or more IP addresses (and port numbers) that specify
where the resource identified by the URI can actually be
accessed. However, Location Services typically introduce
centralization points into the architectures they are used in and
therefore expose the overall system to possible failures. Because
of their nature, DHT appear to be a perfect mean for setting up
a Distributed Location Service (DLS). In this paper we present a
Java-based framework that can be used for building a DLS
independent from the specific DHT algorithm and
communication protocol adopted.

1. INTRODUCTION

Distributed Hash Tables (DHTs) are structured peer-to-peer
(P2P) systems that provide an information storage and
retrieval service of key/value pairs among a number of nodes.
DHTs feature desirable properties such as scalability, self-
organization, robustness, and fault-tolerance. Several DHT
algorithms, such as Chord [1] and Kademlia [2], have been
defined and successfully implemented.
DHTs rely on the cooperation of a number of nodes (peers)
which collectively provide the information storage and
retrieval service. Nodes are arranged on an overlay network,
which is built upon an existing network, whose topology
depends on the particular DHT algorithm. For instance,
Chord organizes nodes on a circle, while Kademlia as leaves
of a binary tree. The structure of the DHT topology affects
message routing inside the DHT. Each DHT algorithm
typically defines also a protocol (usually a set of RPCs) to be
used for the communication and cooperation among the DHT
nodes.
Applications interact with the DHT through two basic
Remote Procedure Calls (RPCs), which can be abstractly
defined as:

- put(key, value): this method is used to store a key/value
pair into the DHT;

- get(key): this method is used to retrieve the information
stored in the DHT that is associated with the given key.

The key of a resource is in general the hash of the resource
name through some hashing function defined by the DHT
algorithm, while the value is a short data associated to such
resource (some metadata and/or the contact address where the
resource can be found).
Based on such storage and retrieval service, we build a
general P2P Distributed Location Servce (DLS) system
capable of providing a lookup service for the binding
between an URI [4], identifying a generic resource, and one
or more mapped contact URIs, identifying the place where or
through which the resource can be accessed. Resources could
be a web service, a file, an application user agent, a user, a
processor resource, or any other addressable resources.
Together with each contact URI some other information
useful for the LS should be stored like the expiration time, an
access priority value, and, optionally, a displayable text (for
example a description of the contact or a readable name). The
proposed P2P LS actually maintain the mappings between
resource URI contact URIs in a distributed (P2P-oriented)
and reliable manner. Note that RFC 2397 [6] defines a
method for mapping any (short) data within a standard URI.
Using such mechanism (RFC 2397), our LS system may also
be seen as a generic system for storing any kind of short data
in a distributed P2P manner, providing a sort of distributed
database.
In the rest of this paper we first present the layered
architecture of the proposed DLS (section 2), then we
describe the software implementation (section 3), and finally
we present some practical developed systems based on such
DLS framework (section 4), followed by some conclusions.

2. DLS ARCHITECTURE

Many applications require some lookup service to retrieve
location information of some requested resources. In the
simplest case, this information may be the mapping between
a fully qualified domain name (FQDN), like the current DNS
system, or a more sophisticated mapping that may take into
account dynamic resolution and/or application level
parameters. Although the DNS system may seem a basic
solution for such service it suffers reliability, dynamicity, and

This work has been partially supported by the Italian Ministry for
University and Research (MIUR) within the project PROFILES under the
PRIN 2006 research program.

flexibility problems. For this reason, in several application
environments a complete P2P-based DLS may be preferred.
Examples of such environments are: i) VoIP (or general real-
time communication) applications in which users may
dynamically join the system through one ore more User
Agents (UAs), ii) file sharing platforms, as already
implemented in current P2P systems (BitTorrent, eMule,
Gnutella, etc.), iii) resource sharing systems in which users
share their processing and/or storing capability, iii) web
services, and other dynamic remote services.
Although any single application may implement such LS in a
proper and ad-hoc manner, a general and common approach
may be preferred in order to let different applications to i)
reuse existing protocols and corresponding implementation
codes, ii) share the DLS P2P platform in order to increment
the resulting availability and robustness.
Hence we propose to use a general DLS system that basically
performs storing and retrieval service on a distributed table
that simply maps keys to values. The keys are hash-derived
by the resource URIs while the values associated to each
resource are a list contact URIs with some other information
useful for location service such as a text resource description
or display name, the expiration date, and a priority value used
when more contact URIs are provided for the same resource.
Such LS can be abstractally represented through a lookup
table as shown in Figure 1.
It easy to see that this LS may be applied to a vast set of
applications.

key Values
resource-URI-1 contact-URI-1,dispaly-name-1,priority=1.0,expires=T1

contact-URI-2,dispaly-name-2,priority=1.0,expires=T2
contact-URI-3,dispaly-name-3,priority=1.0,expires=T3

resource-URI-2 contact-URI-4,dispaly-name-4,priority=1.0,expires=T4

resource-URI-3 contact-URI-5,dispaly-name-5,priority=1.0,expires=T5
contact-URI-6,dispaly-name-6,priority=1.0,expires=T6

�… �…

Figure 1 �– DLS abstract lookup table.

Such LS could be accessed through two very simple API
calls:
- put(key, value)
- get(key)
where key is a resource URI, while value is a single or a set
of tuples of display name, contact URI, expire time, and
priority value. The get() method should return the set of the
corresponding values (actually the contact information)
associated with the given resource.
In a network-based application, such distributed LS could be
implemented within a proper LS layer as represented in
Figure 2.
The DLS protocol includes all mechanisms and functions to
access the rest of the DLS system implemented on the other
nodes according to the proper P2P system.

Application

DLS protocol

TCP/UDP/SCTP/IP

DLS Interface (e.g. put(), get())

Sockets

Figure 2 �– General LS client layered architecture.

Considering a DHT-based P2P DLS infrastructure in which
each node (actually a peer) cooperates to the maintenance of
the DHT and the resulting DLS, the previous architecture can
be particularized as shown in Figure 3. In such architecture
the DLS protocol is composed by three sub-layers: the DLS
layer, the Peer layer, and the RPC protocol used to interact
with the other peers according to the selected DHT algorithm.

DHT algorithmPeer

DLS

RPC(1) protocol

Peer Interface

RPC

(e.g. request(), respond())

(e.g. join(), leave(), put(), get())

Application

TCP/UDP/SCTP/IP

DLS Interface (e.g. put(), get())

Sockets

Figure 3 �–DLS peer (DHT-aware) layered architecture.

Let us separately consider the various components of the
proposed architecture.

2.1. DLS layer

The DLS layer provides the basic LS service to the
application layer. It mainly maps the get() and put() LS
methods upon the corresponding methods provided by the
Peer layer that actually implements the specified DHT
algorithm (Kademlia, Chord, Pastry, etc.).
All P2P specific functions (such as join or leave methods,
and peer identification) are trasparent for the application
layer and are masquerated by the DLS layer.

2.2. Peer layer

The Peer layer has the task to dinamically setup and maintain
the DHT infrastructure, interacting with the other
corresponding peers according to the chosen DHT algorithm.
It completly masquerades to the DLS layer all details about
the the adopted DHT algorithm offering a trasparent and
uniform interface. As result, it offers to the upper layer (the
DLS) only basic peer operations common to all various DHT
algorithms that are:
- join: this operation allows a peer to join an overlay;

- leave: this operation allows a peer to leave the overlay it
is currently enrolled in;

- put: this operation allows to store a key/value pair in the
DHT;

- get: this operation allows to retrieve the information
associated with the given key.

On the other side, the actual peer remote calls depends on the
chosen DHT algorithm and are mapped on the underlying
RPC protocol (in Figure 3 indicated with RPC(1)).

2.3. DHT algorithm

The DHT algorithm is the actual logic implemented by the
peer and used to store and retrive dynamic mapping between
keys and values in a distributed fashion. At this level, the
keys are the hash of the resource URI, while the mapped
values are a set of tuples containing the resource contact
information (contact URI, display name, expire time, and
priority value).
Note that according to RFC 2397 [6], which defines a method
for mapping any (short) data within a standard URI, the
contact URI information may be used to encapuslate short
data in place of or in addition to the actual resource contact
URI. This in turn allows the DHT and the corresponding
DLS to be used as generic system for storing any kind of
short data in a distributed P2P manner, providing a sort of
distributed database.

2.4. RPC protocol

The DHT-based P2P system requires that all peers enrolled in
the DHT overlay network exchange information for the DHT
setup, update, and maintainance.
The interaction between peer occurs through a
request/response model according to the specific DHT
algorithm implemented by the Peer layer and is mapped over
the actual communication protocol provided by the RPC
protocol (RPC(1) in Figure 3).
Hence this layer is responsible for trasforming the peer
remote DHT methods/calls (such as join(), leave(), get(),
put()) to proper request/response communication messages.
In turn, the RPC protocol may use an underlying transport
protocol such as TCP, UDP, SCTP, TLS or DTLS, depending
on the type of the used RPC protocol (reliable/unreliable,
message/stream oriented, etc.) and on the target security
level.
On the receiver side this layer is responsible for receiving
messages from other peers, parsing them, and calling the
corresponding RPC API methods.

2.5. DHT-unaware clients and peer adapters

According to above, a DHT-aware peer cooperates to
maintain the DHT and the DLS system and provides an

interface to the upper level application for accessing the DLS
through the DLS interface at the same time.
However, it could be also interesting to consider other
application scenarios in which a node that wants to access the
LS service is not aware of the underlying DHT and does not
partecipate to the maintainance of the P2P DLS. As result,
the above architecture is decoupled between nodes (DLS
peers) that are aware of the DHT and nodes (DLS client) that
are not.
The architecture of a generic DLS client is shown in Figure 4.

(e.g. request(), respond())

DLS

RPC(2) protocol

Application

TCP/UDP/SCTP/IP

DLS Interface (e.g. put(), get())

RPC

Sockets

Figure 4 �–DLS client (DHT-unaware) layered architecture.

In a DLS client the DLS layer still offers to the upper
application layer a basic LS service (through the basic put
and get methods). However, differently from a DLS peer, a
the DLS layer within a DLS client maps directly these
methods to proper RPC calls to a remote DLS server.
In general, such RPC protocol could be different from that
used by the Peer layer within DLS peers, and for this reason
is here referred as RPC(2) (Figure 4).
In order to effectivelly allow a DLS client to access the DLS,
a sort of DLS adapter peer is required. Such adapter peer in
adjuction to the normal peer operations should perform DLS
server function, that is a sort of relay function allowing DLS
client requests to be relaid to the P2P DLS system.
The overall architecture of a DLS client and a DLS peer
adapter is shown in Figure 5.

DLS

Application

TCP/UDP/SCTP/IP

DLS Interface (e.g. put(), get())

RPC

RPC(2)
protocol

PUT/GET

REQ/RESP

TCP/UDP/SCTP
IP

Sockets

DHTPeer

DLS

RPC(1)
protocol

Peer Interface

RPC

TCP/UDP/SCTP/IP

RPC(2)
protocol

RPC

Sockets

Figure 5 �–DLS client with adapter peer.

Note that RPC(1) and RPC(2) may or may not be the same
protocols; this is just an implementation issue.
It is important to remark that the proposed layered
architecture is general and independent from the selected
DHT algorithm and RPC protocols. More precisely, it is
defined with the following three components:

- a DHT algorithm;
- a RPC(1) protocol used for managing the DHT (inserting

a new peer, updating the DHT, etc.);
- a RPC(2) protocol used to perform basic LS queries like

put(), get() on the distributed LS, used by non-DHT
peers; since DHT peers uses for maintaining the DHT,
protocol C3 is intended for pure DHT access at the
border of the P2P system.

3. IMPLEMENTATION

We have implemented a Java-based complete framework to
realize a DLS with any DHT algorithm and suitable
communication (RPC) protocol. Our implementation
therefore does not make any assumption about the DLS
components used and follows the architecture sketched
above.
Our implementation is in accord to the architecture described
in the previous section and represented in Figure 2 and Figure
3. A client application that uses such DLS would use the
service by calling two basic DLS-access API methods: put()
and get(). The DLS layer would then store or retrieve the
requested resources through the proper use of the underlying
layers.
In order to be protocol-independent, DHT messages are
handled internally by the peer through neutral message
objects that contain the basic information about any request
or response that might occur within the DHT. However, these
objects are not strictly defined, that is, extra information that
might be significant for a specific DHT algorithm can be
added and retrieved in a transparent way.
Obviously, also the DHT algorithm logic is not specified.
The peer�’s core the implements the DHT logic offers the
basic functionalities that are common to all the DHT
algorithms. The specific logic must be implemented by
extending the abstract Peer class.
DHT API methods are asynchronous, that is, once they are
called they are executed on a different thread, thus allowing
the peer to continue its lifecycle and be able to handle
incoming requests. Once the method has been executed, the
listener that was registered for this event (usually the peer) is
notified through callback methods. However it is possible, if
needed, to implement synchronous methods from
asynchronous ones simply by blocking the main trhead until
the callback method is called.
The DLS framework that we have realized has been
successfully used to implement an actual Java-based DLS.
The DLS supports the Chord and Kademlia DHT algorithms
and uses dSIP [3] as a communication protocol within the
overlay.
The implementation process has been focused on the
extension of the abstract Peer class in order to realize the
DHT algorithms, together with some other classes that
implement the DHT RPCs. A DHT Communicator has also

been implemented in order to support dSIP as a
communication protocol. This step has simply required the
creation of the classes to parse the incoming the dSIP
messages and transform them into the neutral message
representation (DSIPMessageParser) and to create new dSIP
messages (DSIPMessageFactory). The DHT Communicator
has been based on the MjSIP stack [10], which provides the
SIP stack and the API for the SIP signalling protocol [5].
Our DLS is used as a general purpose DLS, which means that
the resources stored into the DHT do not refer to a specific
URI scheme. In this way the DLS can be used by many
applications that work with different URI schemes. An
important side effect of merging different location services
into a unique DLS is to strengthen the LS, thus allowing for
high availability and fault tolerance.
Figure 6 shows the DLS implementation structure, which is
totally compliant to the architecture that was described in the
previous sections.

TCP/UDP/SCTP/IP

Application
onRPCCompleted()

DHTCommunicator
(DSIPCommunicator) request()/respond()

KademliaPeer
ChordPeer

Peer
put()/get() onDHTRequestReceived()/

onRPCCompleted()

Sockets

Figure 6 �– DLS framework implementation.

We have also implemented, according to Figure 5, the
protocol adapters for the SIP and HTTP protocols, so that a
peer can receive and process SIP and HTTP requests sent by
legacy applications that are not aware of the P2P substrate.

4. SAMPLE APPLICATIONS

Our DLS has been used to create some sample applications
that show how the DLS can be exploited to create purely
distributed applications.

4.1. Peer-to-peer SIP calls

Pure P2P SIP calls can be performed by exploiting the DLS
as a SIP LS. Legacy SIP User Agents would register
themselves using a peer enrolled into the DHT as a Proxy
server. The peer would receive the registration request at its
SIP protocol adapter interface and store the UA�’s contact into
the DHT. When a UA wants to perform a SIP call, it sends an
INVITE request to the peer for some user. The peer performs
a lookup to resolve the target user�’s address and retrieve its

location, then it would forward the INVITE request to the
UA. The SIP session is now initiated. User registration
scenario is sketched in Figure 7. Session establishment is
shown in Figure 8.

Figure 7 - Peer-to-peer SIP user registration.

Figure 8 - Peer-to-peer SIP call.

4.2. Virtual HTTP web server

Another DLS-based application is a HTTP distributed virtual
server. In such application, a virtual web server is deployed.
This means that the files are not stored on the same host but
are published by a number of nodes that collaborate. Data
replication can be achieved by storing the same information
on different hosts, and the website contents can be partitioned
among several nodes.

4.3. Distributed database

RFC 2397 defines a method for mapping any short data
within a standard URI (data:). Such URIs encapsulate small
amount of data, such as small images. We could think to
extend the usage of data: URIs to store some short data of
any kind into the DHT. It is important to point out that the
data should be short, because DHT�’s self-reorganization
requires the transfer of resource information among the peers
and, since this happens quite often in real P2P networks, it
would cause an overload of the network traffic. However,
under the hypothesis of short data, the DLS can be extended
to become also a distributed database. Note that, in this case,
the data are self-contained in the URI and the information
stored in the DHT are not an access information but the data
itself. Therefore, the data stored into the DLS are persistent,
that is, they can still be accessed even when the node that has
published them leaves.

5. CONCLUSIONS

In this paper we have presented the architecture for a
Distributed Location Service. A DLS is composed of three
main components: a DHT algorithm, a P2P protocol, and a
client protocol. We also have presented a Java-based
framework to build a DLS independent from the DHT
algorithm and communication protocol to be used
transparently by any application. Our implementation also
provides an actual DLS that uses Chord and Kademlia as
DHT algorithm and dSIP as a communication protocol. We
also realized the protocol adapters for the SIP and HTTP
protocols in order to let the peers receive and process
messages sent by legacy applications that are not aware of the
P2P substrate. Finally, we have presented some sample
applications to show how the DLS can be exploited to build
distributed applications.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M.

Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on Networking,
11(1):17�–32, February 2003.

[2] P. Maymounkov and D. Mazires. Kademlia: A Peer-to-
Peer Information System Based on the XOR metric. In
1st International Workshop on Peer-to-peer Systems,
2002.

[3] D. Bryan. dSIP: A P2P Approach to SIP Registration and
Resource Location. Internet-Draft draft-bryan-p2psip-
dsip-00, IETF, February 2007.

[4] T. Berners-Lee, R. Fielding, and L. Masinter, �“RFC
3986: Uniform Resource Identifier (URI): Generic
Syntax,�” January 2005, status: IETF Standard Track.

[5] J. Rosenberg, H. Schulzrinne, G. Camarillo, J. Peterson,
A. Johnston, and E. Schooler, �“RFC 3261: SIP: Session
Initiation Protocol,�” June 2002, status: IETF Standard
Track.

[6] L. Masinter, �“RFC 2397: The �“data�” URL scheme,�”
August 1998, status: IETF Standard Track.

[7] M. Zangrilli and D. Bryan. A Chord-based DHT for
Resource Lookup in P2PSIP. Internet-Draft draft-
zangrilli-p2psip-dsip-dhtchord-00, IETF, February 2007.

[8] S. Cirani and L. Veltri. A Kademlia-based DHT for
Resource Lookup in P2PSIP. Internet-Draft draft-cirani-
p2psip-dsip-dhtkademlia-00, IETF, October 2007.

[9] S. Cirani. Implementation of the Chord and Kademlia
DHTs with dSIP, October 2007.
http://www.mjsip.org/projects/p2psip/p2psip_dsip_0710
25.zip

[10] L. Veltri. mjSIP project, 2007. http://www.mjsip.org

